PTag=AeS (2)
式中,Ae為電子標簽的有效面積如公式(3):
無源RFID系統的電子標簽是通過電磁場供電,因此標簽有很大的功耗,當讀寫的距離越短時,其性能就會越差。電子標簽的工作電壓決定了RFID電子標簽能否正常的工作,同時也決定了無源RFID系統的識別距離。但隨著集成電路工藝的不斷發展,射頻電子標簽芯片的功耗也在來斷的降低。目前,比較典型的低功耗電子標簽,其標簽本身的功耗可以低至數十微瓦到數微瓦,這種標簽的工作電壓為1.2 V左右。這種無線電發射功率受到限制,但無源電子標簽的識別距離可以過到10 m以上。
2)電子標簽到閱讀器的能量傳輸
電子標簽返回的能量取決于它的雷達散射截面面積,并和其成正比,它是目標反射電磁波能力的測度。散射面積是主要取決于兩個參數,其一是本身的物體特性如目標的大小、材料、表面結構和材料,其二是反射電磁波的特性,比如電磁波的極化方向和波長等。電子標簽在空間的某個位置接收到閱讀器發射的電磁波后,將其中的一部分吸收用于提供自身工作的能量,而另外一部分被反射回去,電子標簽反射電磁波的能量:
根據以上計算可知,天線方向圖和增益G的要求與系統的頻率選擇無關,而讀寫器天線的“視場”大小的要求,取決于目標的速度和運動范圍,與系統的頻率選擇無關。對接收機和標簽的靈敏度的要求和頻率也是無關,所以當頻率增高,作用距離就會變小。如果保持同樣的作用距離,那么UHF系統的基站發射功率P比2.45 GHZ系統低7倍,5.8 GHz系統需要高40倍。
4 遠程RFID系統的沖突問題
遠距離無源RFID系統具有作用距離遠且視場范圍大的特點,但同時也容易出現一個多機或多卡的現象,從而導致系統讀寫多標簽出現沖突。所以有必要采取一些好的防沖突地區的技術。多卡沖突仲裁就是在同一時間只能有一個卡響應,這就需要用讀寫器命令進行控制。仲裁的方法主要有兩種:Binary和Aloha。
4.1 Binary多卡沖突仲裁
Binary多卡沖突仲裁,主要是通過采用狀態機的方式來實現多卡讀寫仲裁機制,其中主要有4種狀態。
其中的狀態解釋如下:
Power-OFF狀態:指的是識別卡處于關機狀態,即讀寫器此時不能被激活識別卡;
Ready狀態:當識別卡第一次被讀寫器激活時,識別卡就會處于Ready狀態;
ID狀態:如果識別卡試圖傳送識別信息給讀寫器時,識別卡就會處于ID狀態;
Data_Exchange狀態:如果讀寫器識別并被選中識別卡時,識別卡就會處于Data_Exchange狀態
為了支持仲裁沖突,識別卡上有兩個硬件電路:8bit計數器Counter和1bit隨即數發生器(只有兩個可能的值:0和1)。當所有的或一部分讀寫器射頻電磁場上的識別卡參與沖突仲裁時,讀寫器上的Group_Unselect和Group_Select命令就會運行沖突仲裁算法。
4.2 Aloha算法
ALOHA協議是一種防碰撞的沖突仲裁算法。如果在隨機的時間間隔中有多個標簽發送數據包,并且這個數據包發生了碰撞,那么標簽就會等待一個隨機的時間,然后再次發送數據。這種算法吞吐率低,適用于只讀標簽的應用場景。于是就出現了時隙Aloha算法。
時隙Aloha算法改善了Aloha算法的吞吐率。它采用讀寫器控制的隨機TDMA方法。這種方法是將信道分為很多個時隙,并且讓每一個時隙就剛好能傳送一個分組。而時隙的長度能過系統的時鐘進行控制,每個控制單元要與此時鐘同步。在RFID系統中,標簽只能在其規定的同步時隙內傳輸數據包。與Aloha算法相比,提高了吞吐率,為了善在多標簽環境下的性能,隨后又提出了動態時隙Aloha算法。
動態時隙Aloha算法,是一種可以動態調整時隙數量的算法。如果讀寫器在等待的狀態中的循環時隙段中發送了請求命令,就會有1~2個時隙給可能存在的標簽使用。當但多個標簽在兩個時隙內發生了碰撞,那么就要通過請求命令增加時隙數量,以供標簽使用,直到發現一個唯一的標簽為止。對于Aloha算法、時隙Aloha算法還是動態時隙Aloha算法,其標簽發送數據都是隨機的,因此不能保證整個系統的可靠性,且信道的利用率較低。
關于Binary多卡沖突仲裁方法和Aloha算法都有其優缺點。而Binary信道利用率可高達43%,識別率較高,也不存在錯誤判決問題,但其因時延長,而安全性較差。Aloha算法實現簡單,但其信道利用率最大為36%,出存在一些錯誤判斷問題,所以不適合應用于大量標簽的場合。在設計系統時要根據系統的應用場合選擇合適的防碰撞算法。
2021-10-26 08:46
2021-09-25 08:59
2021-08-31 16:26
2021-08-27 10:03
2021-08-26 13:38
2021-08-23 08:52
2021-08-20 08:55
2021-08-14 14:25
2021-08-09 09:12
2021-08-05 08:49